Higher localised <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mover accent="true"><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:math>-genera for proper actions and applications
نویسندگان
چکیده
For a finitely generated discrete group $\Gamma$ acting properly on spin manifold $M$, we formulate new topological obstructions to $\Gamma$-invariant metrics of positive scalar curvature $M$ that take into account the cohomology classifying space $\underline{B}\Gamma$ for proper actions. In cocompact case, this leads natural generalisation Gromov-Lawson's notion higher $\hat{A}$-genera setting actions by groups with torsion. It is conjectured these invariants obstruct existence $M$. classes arising from subring $H^*(\underline{B}\Gamma,\mathbb{R})$ elements degree at most $2$, are able prove this, under suitable assumptions, using index-theoretic methods projectively invariant Dirac operators and twisted $L^2$-Lefschetz fixed-point theorem involving weighted trace conjugacy classes. The latter generalises result Wang-Wang projective setting. special case free trivial class, reduces Mathai, which provided partial answer conjecture Gromov-Lawson $\hat{A}$-genera. If non-cocompact, obtain being partitioning hypersurface inside non-cocompact $\Gamma$-manifold non-negative in neighbourhood hypersurface. Finally, define quantitative version index use it parameterised vanishing terms lower bound total term square operator.
منابع مشابه
Proper actions and proper invariant metrics
We show that if a locally compact group G acts properly on a locally compact σ-compact space X, then there is a family of G-invariant proper continuous finite-valued pseudometrics which induces the topology of X. If X is, furthermore, metrizable, then G acts properly on X if and only if there exists a G-invariant proper compatible metric on X.
متن کاملGeometric Quantization for Proper Actions
We first introduce an invariant index for G-equivariant elliptic differential operators on a locally compact manifold M admitting a proper cocompact action of a locally compact group G. It generalizes the Kawasaki index for orbifolds to the case of proper cocompact actions. Our invariant index is used to show that an analog of the Guillemin-Sternberg geometric quantization conjecture holds if M...
متن کاملKk-theoretic Duality for Proper Twisted Actions
Let the discrete group G act properly and isometrically on the Riemannian manifold X. Let C0(X, δ) be the section algebra of a smooth locally trivial G-equivariant bundle of elementary C∗-algebras representing an element δ of the Brauer group BrG(X). Then C0(X, δ ) ⋊ G is KK-theoretically Poincaré dual to ( C0(X, δ)⊗̂C0(X)Cτ (X) ) ⋊ G, where δ is the inverse of δ in the Brauer group. We deduce t...
متن کاملHigher-order Genera of Knots
For certain classes of knots we define geometric invariants called higher-order genera. Each of these invariants is a refinement of the slice genus of a knot. We find lower bounds for the higherorder genera in terms of certain von Neumann ρ-invariants, which we call higher-order signatures. The higher-order genera offer a refinement of the Grope filtration of the knot concordance group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2022
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2022.109695